Evolution of Drift Robustness in Small Populations of Digital Organisms

نویسندگان

  • Thomas LaBar
  • Christoph Adami
چکیده

Most mutations are deleterious and cause a reduction in population mean fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional reduction in fitness: the drift load. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether populations can evolve a reduced drift load. Here, using digital experimental evolution, we show that small populations do evolve reduced drift loads, that is, they evolve robustness to genetic drift, or “drift robustness”. We find that, compared to genotypes from large populations, genotypes from small populations have a decreased likelihood of small-effect deleterious mutations, thus causing small-population genotypes to be drift-robust. We further show that drift robustness is not under direct selection, but instead arises because small populations preferentially adapt to drift-robust fitness peaks. These results have implications for genome evolution in organisms with small effective population sizes. One consequence of the power of adaptation is that the majority of mutations reduce their bearer’s fitness [1]. The recurring nature of these deleterious mutations results in an equilibrium reduction of population fitness at mutation-selection balance. At the population level, this reduction in fitness is known as the genetic or mutational load [2–5]. As selection generally acts to increase a population’s mean fitness, one avenue for selection to increase mean fitness is to reduce the mutational load by altering mutation-selection balance and increasing mutational robustness [6, 7]. The evolution of mutational robustness has been demonstrated using theoretical modeling [8–11], digital experimental evolution [12–14], and microbial experimental evolution [15–17]. Recurring deleterious mutations are not the only strain on fitness. In small populations, genetic drift leads to the fixation of slightly-deleterious mutations that bring about a reduction in fitness called the drift load [18, 19]. Over time, genetic drift can lead to continual fitness declines and ultimately population extinction [20, 21]. In asexual populations, this

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of population size and mutation rate on the evolution of mutational robustness.

It is often assumed that the efficiency of selection for mutational robustness would be proportional to mutation rate and population size, thus being inefficient in small populations. However, Krakauer and Plotkin (2002) hypothesized that selection in small populations would favor robustness mechanisms, such as redundancy, that mask the effect of deleterious mutations. In large populations, by ...

متن کامل

Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms

A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Populati...

متن کامل

Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...

متن کامل

Reduced lifespan and increased ageing driven by genetic drift in small populations.

Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship betwe...

متن کامل

Experimental Evolution and Population Genetics of RNA Viruses

Viral studies have contributed substantially to the field of experimental evolution during the last two decades. The rapid evolution of RNA viruses makes them especially suitable for investigating real-time evolution, while their small genomes facilitate the analysis of the genetic basis of evolutionary change. We review recent advances in RNA virus experimental evolution, focusing on genetic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016